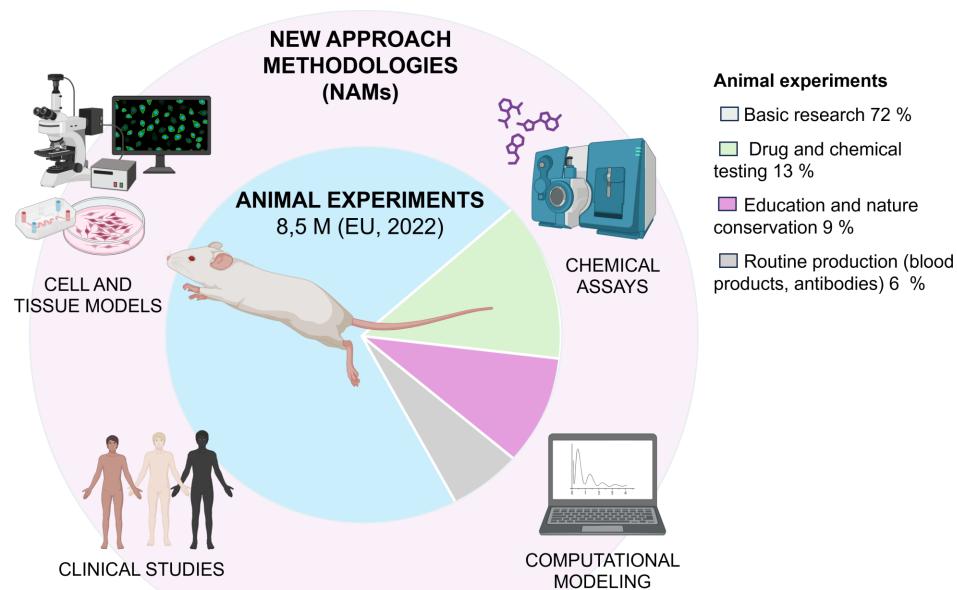
Tampereen yliopisto

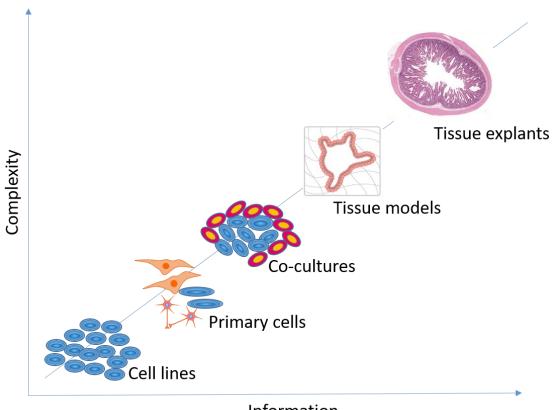
Where are we heading with New Approach Methodologies?

Hanna Vuorenpää Senior scientist

3R-Center for In Vitro Models and Alternatives to Animal Testing & µOrganoLab, University of Tubingen

13.11.2025




Image made by BioRender.com 20.11.2025 |2

Cell and tissue models

"In vitro models are experimental systems used to study biological processes outside their natural context, typically in a controlled laboratory environment." (copilot)

Information

Immortalized cell lines, primary cells, stem cells, cell models (2D and 3D cell models, organoids and spheroids, organ-on-chips), ex vivo models, microorganisms

Why are cell and tissue models needed?

- Basic research: studying biological processes and mechanisms, eg. developmental biology
- Translational research: improved understanding of diseases. Pathological conditions are modelled by recreating the disease in laboratory environment
- □ → mechanisms or progression of the disease is studied
- Testing safety and efficacy of compounds: drugs, chemicals, medical devices, food components
- Regenerative medicine: expanding healthy cells in laboratory to replace damaged tissue (transplantation, cell delivery)
- Reducing and replacing animal models: final goal of the Directive 2010/63/EU is to phase out animal experiments "as soon as it is scientifically possible"

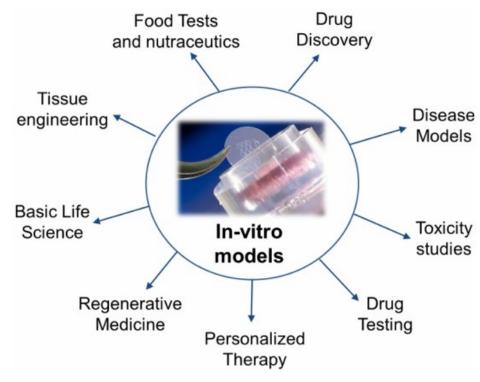
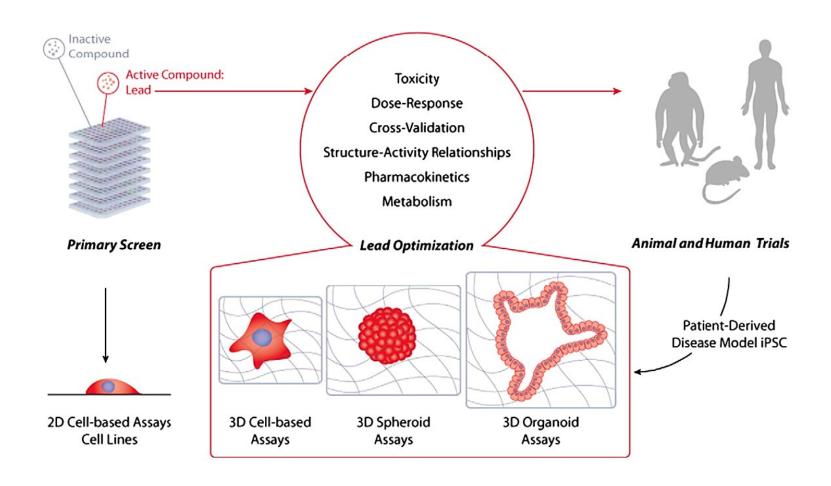
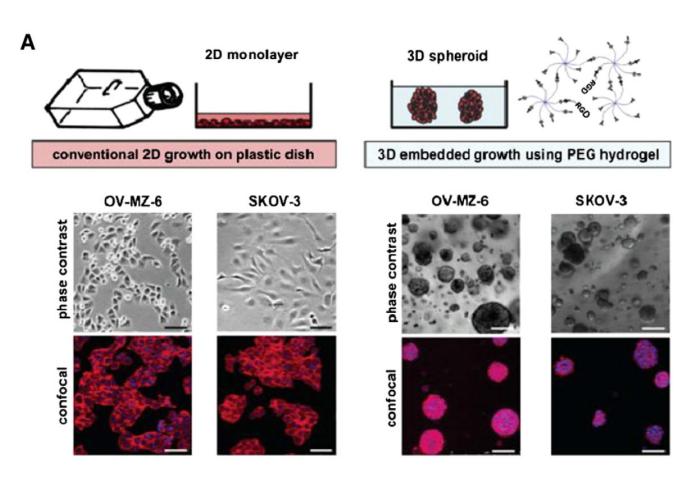



Image from Mattei et al. 2014. Design Criteria for Generating Physiologically Relevant In Vitro Models in Bioreactors.

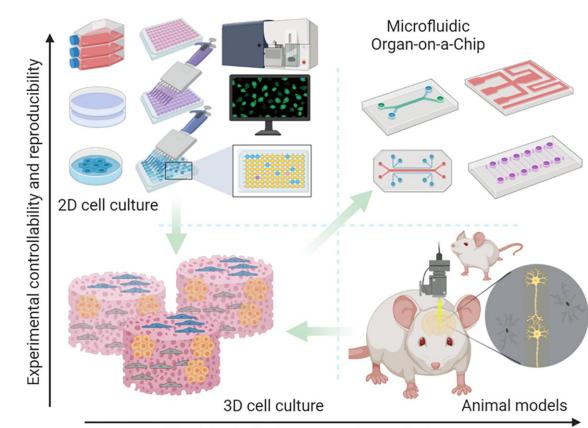
Advanced cell models can accelerate and improve drug development



- Drug development takes 10–15 years
- 90 % failure rate for drug candidates in phase I human clinical trial
- Mean cost of developing a new drug is 172.7 M\$ (at 2000-2018)
 - → increased to 515.8 M\$ when cost of failures were included
 - → R&D costs increased from 11.9% to 17.7% from 2008 to 2019

From 2D cell culture to 3D tissue models

- Traditionally, cells are grown in plastic bottles A in planar 2D cultures
 - $_{\odot}$ conditions mimic human body with +37°C, 5% CO_2 and 20% O_2
- In the body, cells are in 3D environment, in contact with other cell types, extracellular matrix and interact with neurons and blood vessels
- When building in vitro models, 3D tissuespesific environment is needed
- With improved physiological mimicry, we get closer to the *in vivo* situation and can reflect the tissue functions with improved accuracy
 - control, manipulation, monitoring



Cancer cell line morphology and proliferation are clearly different between conventional 2D plastic culture and within synthetic PEG hydrogel (Actin filaments stained with rhodamine phalloidin , nuclei with DAPI), Ranga et al 2014

Organ-on-Chip technology

- Organ-on-Chip (OoC) = platform mimicking tissue functions by combining cell biology with microtechnology
 - chip platform with fluidic flow
 - living biological entity
 - stimulation and control
 - analysis
- Control of environmental properties (temperature, pH, CO₂, O₂) and biological processes
 - Cell-cell and cell-environment interactions
 - Real-time physiological responses and their monitoring
- Tissue interactions and even systemic effects by combining OoCs in a "Body-on-Chip"
- vascularization, innervation, immune system

Physiological relevance and complexity

Microvasculature-on-chip

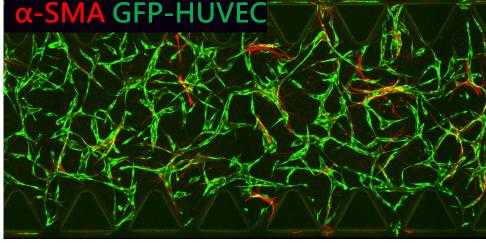
> Front Bioeng Biotechnol. 2022 Feb 8:10:764237. doi: 10.3389/fbioe.2022.764237. eCollection 2022.

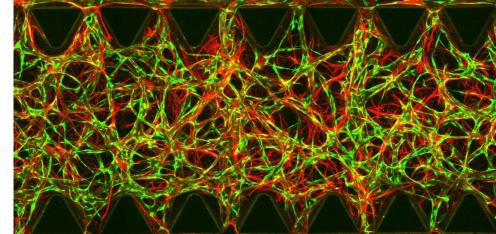
Vasculogenic Potency of Bone Marrow- and Adipose Tissue-Derived Mesenchymal Stem/Stromal Cells Results in Differing Vascular Network Phenotypes in a Microfluidic Chip

Anastasiia Mykuliak ^{1 2}, Alma Yrjänäinen ^{1 2}, Antti-Juhana Mäki ³, Arjen Gebraad ^{1 2}, Ella Lampela ^{1 2}, Minna Kääriäinen ⁴, Toni-Karri Pakarinen ⁵, Pasi Kallio ³, Susanna Miettinen ^{1 2}, Hanna Vuorenpää ^{1 2}

Anastasiia Mykuliak, Doctoral researcher

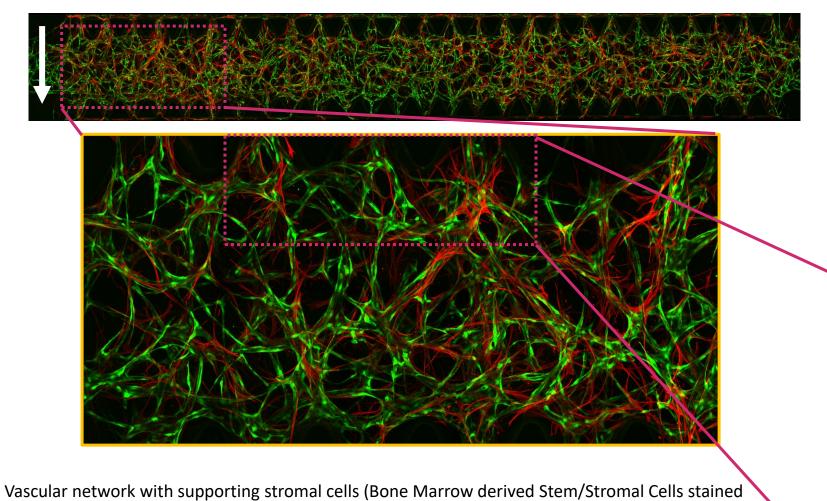
Alma Yrjänäinen, Doctoral reseacher

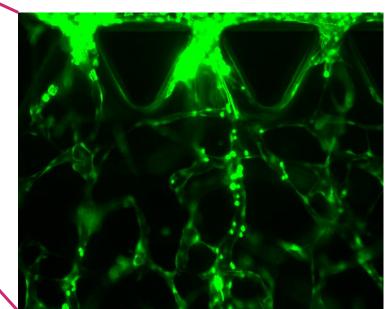

Susanna Miettinen, Ha Prof., Adult Stem Po Cell Group leader



Hanna Vuorenpää, Postdoctoral researcher

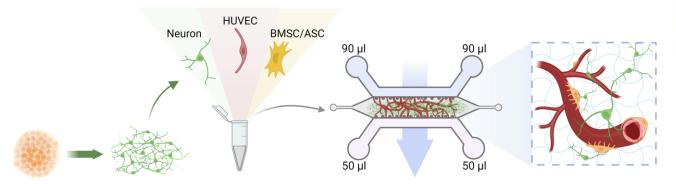
EC-ASC


EC-BMSC



Perfusable vascular network forms the basis for Organ-on-Chip

Vascular network with supporting stromal cells (Bone Marrow derived Stem/Stromal Cells stained against smooth muscle actin, red) and vessel-forming, GFP-tagged human umbilical vein endothelial cells (green) shows perfusion at day 7. Mykuliak, Yrjänäinen et al. 2022



Neuro-vascular network on-chip

> Cell Commun Signal. 2023 Jun 14;21(1):132. doi: 10.1186/s12964-023-01159-4.

Simultaneous induction of vasculature and neuronal network formation on a chip reveals a dynamic interrelationship between cell types

Lotta Isosaari ^{1 2 3}, Hanna Vuorenpää ^{2 3}, Alma Yrjänäinen ^{2 3}, Fikret Emre Kapucu ¹, Minna Kelloniemi ⁴, Toni-Karri Pakarinen ⁵, Susanna Miettinen ^{2 3}, Susanna Narkilahti ⁶

Neuronal differentiation

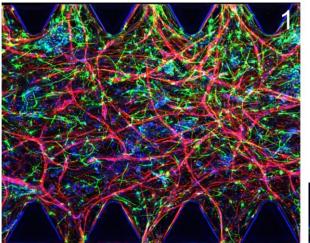
Start

Neurovascular multiculture

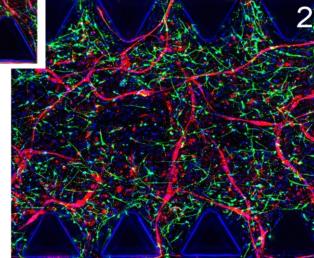
14 days

Lotta Isosaari, Doctoral researcher

Hanna Vuorenpää, Postdoctoral researcher



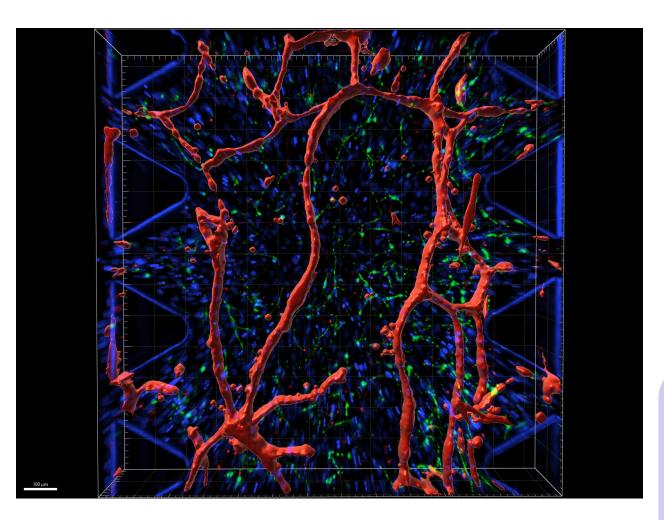
Susanna Miettinen, Prof., Adult Stem Cell Group leader

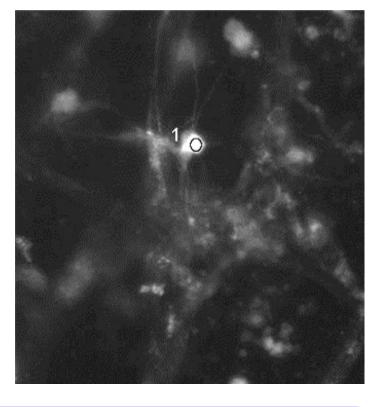


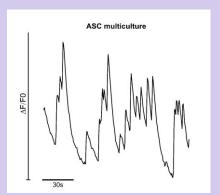
Susanna Narkilahti, Neuro Group leader

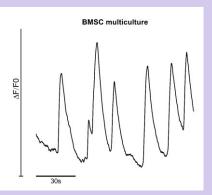
EC-BMSC-neuro multicultures

EC-ASC-neuro multicultures

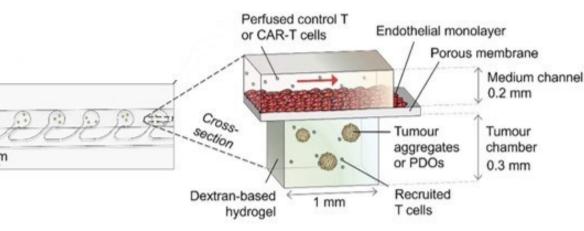



Nuclei (DAPI)
Neurons (MAP-2+βtubIII)
Endothelial cells (CD31)




Neurons interact with the vascular network and remain

functional



Tumor-on-Chip with immune response

- Breast cancer-on-chip model with integrated endothelial barrier
 - breast cancer cells lentivirally transduced to express GFP
 - human microvascular endothelial cells isolated from skin tissue
 - CAR-T cells (genetically engineered T cells to attack own cancer cells) from donor blood mononuclear cells
 - patient-derived organoids established from breast cancer patients
- Model recapitulates the initial events in CAR-T cell
 administration in patients → CAR-T cell perfusion through
 the vasculature and extravasation towards the tumor
- Model captures the phases over the following week → CAR-T cell infiltration and lysis of tumor cells + cytokine release
- Testing pharmacologic safety switch to control CAR-T cells during the therapy
- Integration of metastatic breast cancer patient organoids to demonstrate their applicability in the model and CAR-T cell response

Tissue-engineered vascular models are used to provide mechanistic insight into tumor behaviour, extravasation and therapeutic delivery. Maulana et al. 2024. Breast cancer-on-chip for patient-specific efficacy and safety testing of CAR-T cells. Cell Stem Cell. doi: 10.1016/j.stem.2024.04.018.

Global activities in implementing NAMs

- **USA**: Food and Drug Adminstration (FDA) Modernization Act 2.0 authorized the use of NAMs to support new drug application and removed the requirement to use animal studies (2022)
 - In the long-term, FDA aims to make animal studies an exception rather than norm in preclinical safety/toxicology testing
- **European Union**: EU Commission roadmap for phasing out animal testing in chemical safety assessments
 - short- and long-term actions, including accelerating the development and regulatory acceptance of NAMs in chemical safety assessment
 - the roadmap is planned to be published in the first quarter of 2026
- UK: plan to phase out animal experiments sets out specific commitments
 - To end regulatory testing on skin and eye irritation and skin sensitization using animals by the end of 2026
 - By 2027, researchers are expected to end tests of the strength of botox on mice
 - By 2030, reduce pharmacokinetic studies on dogs and non-human primates

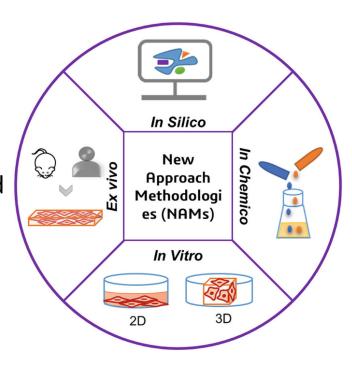
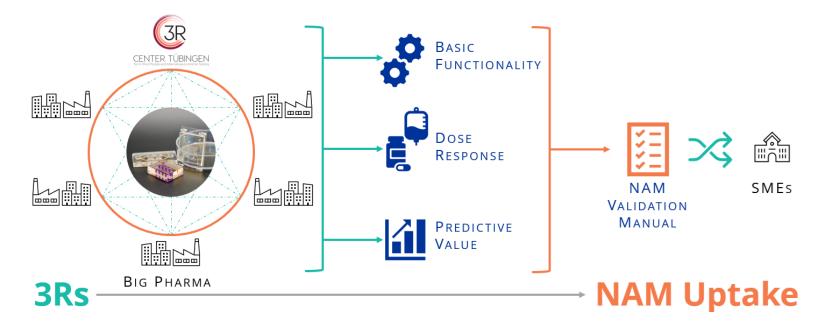
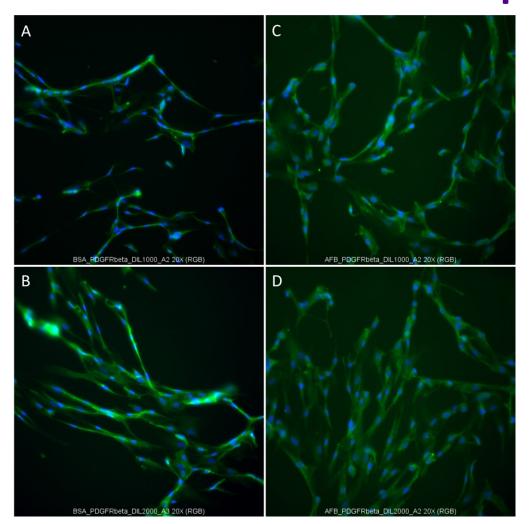


Image from Kasoju & Kripasagari 2024. Animal Models In Research, pp 47–76. New Approach Methodologies (NAMs): Rethinking Preclinical Evaluation of Pharmaceuticals and Medical Devices Beyond Animal Models.


Industrial adaption of NAMs

Objective

Demonstrate stability, reproducibility and predictive value of Organ-on-Chip models to generate best practices for broader industry adoption.


How?

Multi-site functional pre-validation of Organ-on-Chip models with industry partners. SMEs with prior Organ-on-Chip experience (as users or technology providers) are invited for the study as well as pharma companies interested in NAM validation.

Replacing animal-derived reagents in NAMs -example of antibodies

An animal-free antibody (against platelet growth factor receptor β) was tested on adipose tissue stem cells with bovine serum albumin (A,B) and with an animal-free blocker (C,D). Photo Johanna Laakkonen/University of Tampere

- Detection of target proteins relies heavily on animalderived antibodies although issues with reproducibility and specificity are widely acknowledged
 - antibodies are collected from immunized animals
- Replacing animal-derived antibodies with animal-free antibodies in immunocytochemical staining of cells
 - funding from Juliana von Wendt Foundation for pilot project (6 months)
 - aiming to replace the most commonly used antibodies in immunocytochemical staining of cells
- Lessons learned from the project
 - completely animal-free antibodies are difficult to find
 - antibody users need to put pressure to the market
 - Replacement is possible but laborious

Where are we now with NAMs?

Shortcomings

- Lack of adequate physiological complexity
- Lack of organ interactions and systemic effects
- Lack of immunological complexity
- Low throughput
- Lack of expertise (education and training)
- Lack of regulatory readiness (reproducibility, realiability)
- Lack of industrial adoption

Benefits

- Mechanistic understanding of basic biology and diseases
- Personalized medicine applications
- Control and manipulation
- Integration of technology (micro and nanotechnology, sensors, AI)
- Human relevance leading to improved treatmens
- Ethically more sustainable
- Faster decision making
- Reducing costs

Future perspectives for New Approch Methods

- Complexity of NAMs is increasing and biology is combined with eg. patient samples, 3D imaging and microtechnology
 - building confidence in the technology
- Al and big data analytics can help to store and analyze large data sets → future role of Al likely bigger and growing rapidly
- Requirements for personalized medicine are increasing
- Public pressure to replace animal testing is shaping the (political) decision-making
- EU and UK roadmaps to phase out animal experiments, US modernization act

Chemical safety assessments under following legislation are in scope of the Roadmap

- Chemicals registered under the REACH Regulation (ECHA)
- Biocides (ECHA)
- Pesticides (EFSA)
- Food improvement agents (food additives, food enzymes and food flavourings) (EFSA)
- 5) Chemicals used in food contact materials (EFSA)
- Feed additives (EFSA)
- Human medicinal products (EMA)
- Veterinary medicinal products and MRLs for active substances in veterinary medicinal products for foodproducing animals (EMA)
- Medical devices
- 10) Chemicals used in materials/products in contact with drinking water (ECHA)
- Chemicals covered by the occupational safety directives CAD and CMRD (ECHA)
- 12) Chemicals used in human nutrition (EFSA)
- Detergents
- 4) Classification, labelling and packaging of chemicals (ECHA)
- Water and Waste legislation (identification of priority substances)

Image from 2nd Conference Commission roadmap towards phasing out animal testing for chemical safety assessments/25th October 2024

Thank you Björn Ekwall Memorial Foundation!

Contact information: hanna.vuorenpaeae@uni-tuebingen.de