ENGINEERING OF HUMAN 3D VASCULARIZED TISSUES INCLUDING DISEASE MODELS

Angela Rossi, Florian Groeber, Maria Steinke, Marco Metzger, Heike Walles

IGB

The Fraunhofer-Gesellschaft Locations in Germany

Bremerhaven Oldenburg Bremen 67 institutes and research units Hannover more than 23,000 staff Lemgo O Annual research budget of Münster Paderborr Gelsenkirchen Oberhausen Dortmund 2 billion euro Schmallenberg Duisburg Kassel Willich O Köln Sankt Augustin Aachen O Gießen Euskirchen Wachtberg 0 Frankfurt Remagen Hanau 0 0 o Alzenau o Mainz Aschaffenburg o Sulzbach Darmstadt Kaiserslautern Werthein St. Ingbert Mannheim Saarbrücken Karlsruhe Pfinztal Esslingen Ettlingen 00 Stuttgart Translational Center Würzburg Freiburg OKandern 0 Efringen-Kirchen

Our innovation chain – from basics to industrial applications

Fundamental research

Universität Stuttgart Institut für Grenzflächenverfahrenstechnik und Plasmatechnologie

Applied research

Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB

Fraunhofer-Zentrum für Chemisch-Biotechnologische Prozesse CBP

Bio, Electro and Chemocatalysis BioCat, Straubing branch

Translational center "Regenerative therapies for Oncology and Musculoskeletal Diseases TLC

Industrial applications

The Translational Center Würzburg

A joint research center by Fraunhofer and the University Hospital Würzburg

In-vitro-Testsystems

Oral mucosa, Blood-Brain-barrier (BBB), Bone, Cardiac tissue

Generating complex tissues Biological vascularized scaffold (BioVaSc[®])

Mertsching H, Schanz J, Steger V, Schandar M, Schenk M, Hansmann J, Dally I, Friedel G, Walles T. Generation and transplantation of an autologous vascularized bioartificial human tissue. Transplantation. 2009 Jul 27;88(2):203-10.

Static culture conditions

Stratmann AT et al., Establishment of a human 3D lung cancer model based on a biological tissue matrix combined with a Boolean in silico model. Molecular Oncology, 2014 Mar;8(2):351-65

Dynamic culture conditions

Unique technology: BioVaSc[®] – Platform for vascularized tissue models

Research & development activities at Fraunhofer HUMAN AIRWAY MUCOSA MODEL

Generation of a 3D tissue model of the human airway mucosa

In vitro- in vivo correlation

In vitro- in vivo correlation

Infection studies with B. pertussis

Sample processing for transmission electron microscopy

Ultrastructural analysis after infection with *B. pertussis*

Research & development activities at Fraunhofer LUNG TUMOR MODEL

Establishment of decelluarized matrix

Recellularization of lung scaffold

Tumor cells on the lung scaffold

A549

H441

3D lung matrix induces a more *in vivo* – like phenotype 2D 3D

Ki67

© Fraunhofer IGB

Fraunhofer

3D lung matrix induces a more in vivo – like phenotype

2D

3D

Effect of dynamic culture on tumor tissue formation

Research & development activities at Fraunhofer INTESTINAL MODEL

Intestinal Barrier - State of the art - Caco-2 Test

CaCo-2

PET-Insert with defined pore size (1,0 μ m)

Culture conditions static bei 37°C, 5%CO_{2,} 21 days

Development of primary intestinal model

Results – immunohistological characterisation

Results – electrone microscopy

SEM

TEM

Research & development activities at Fraunhofer SKIN MODEL

Three dimensional skin models

Full thickness skin model

Full thickness skin models

- Fibroblast mediated contraction of full-thickness skin models up to 60%
- Limitation to industrial applicability and life span
- Chemical crosslinking to reduce contraction with PEG
- Long term culture
- Repeated application of test substances

IGB

Full thickness skin model Non-contracting collagen hydrogel

Full thickness skin model Wound model

Features:

- Reproducibility (shape and depth)
- Sterility
- Applications
 - Efficacy testing for wound healing

Wounding (video)

Wounded skin equivalent

Helminth infection studies

Jannasch M., Groeber F., Brattig N., Hoffmann W., Walles H., Hansmann J.; Three dimensional skin equivalents as an in vitro test system for percutaneous worm infection; Experimental Parasitology, 2015

Helminth infection studies

Schistosoma mansoni

Donor 120 Donor 100 Model / Tissue Model / Tissue Acceptor Acceptor * Relative larvae ratio [%] 100 Relative larvae ratio [%] 80 80 60 60 40 40 -20 20 0 0 Ex vivo epidermis human skin RhE-C RhS-C RhS vivo epidernis human skin RhS RhE-C RhS-C Cell-free collagen carrier **Reconstructed epidermis**

Jannasch M., Groeber F., Brattig N., Hoffmann W., Walles H., Hansmann J.; Three dimensional skin equivalents as an in vitro test system for percutaneous worm infection; Experimental Parasitology, 2015

Infection Studies – Trypanosoma Collaboration Prof. Engstler University of Würzburg

T. brucei life cycle

T. brucei larvae

Tsetse fly infecting a full thickness skin equivalent

T. brucei larvae after infection

Vascularized skin model

Vascularized skin model

▲: Vessels **ED:** Epidermis D: Dermis **GL**: Vessel lumen hEK: Human epidermal keratinocytes hDF: Human dermal fibroblasts hDMEC: Human microvascular endothelial cells

Assessment of mild irritative effects via impedance spectroscopy

F. Groeber, L. Engelhaldt, S. Egger, H. Werthmann, M. Monaghan, H. Walles, J. Hansmann. Impedance spectroscopy for the non-invasive characterization of in vitro epidermal models.

Assessment of mild irritative effects via impedance spectroscopy

Epidermal model automated production

Process automation of down stream analysis

Schmid F., Schwarz T., Schuberthan W., Klos M., Walles H., Hansmann J., Groeber F.; Automated assessment of the barrier function of in vitro epidermal models using a dual-arm robotic system; Biotechnology Journal; submitted

Research & development activities at Fraunhofer **THANK YOU FOR YOUR ATTENTION!**

