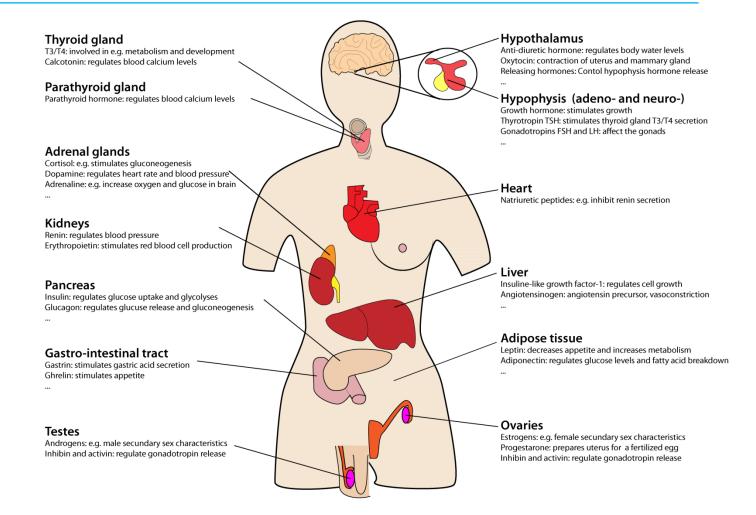
Development of computer models to predict chemicals interference with thyroid hormones

3R symposium 2017

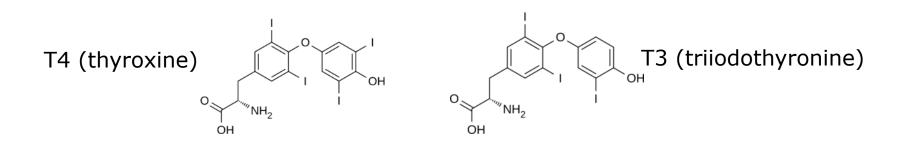
Marianne Dybdahl Division for Diet, Disease Prevention and Toxicology

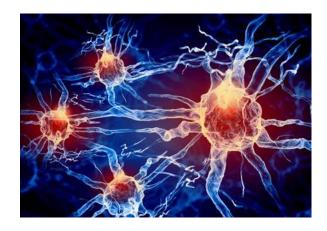
 $f(x+\Delta x) = \sum_{i=0}^{\infty} \frac{(\Delta x)^{i}}{i!} f^{(i)}(x)$

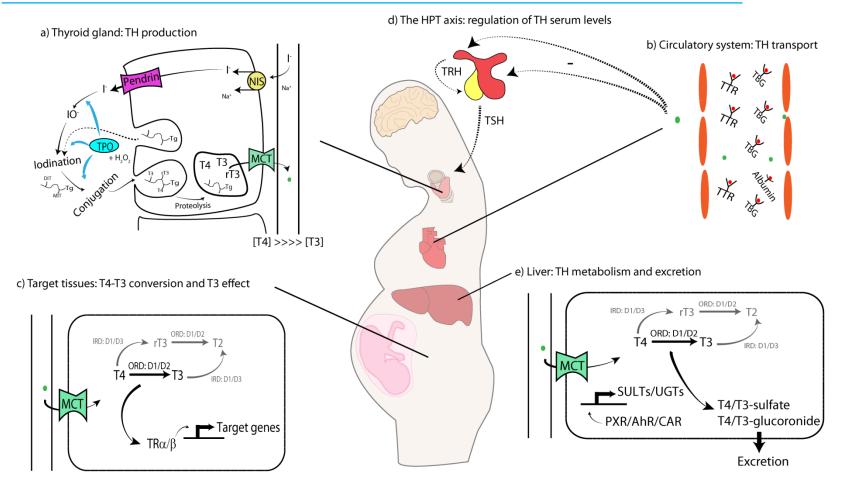
DTU Food National Food Institute

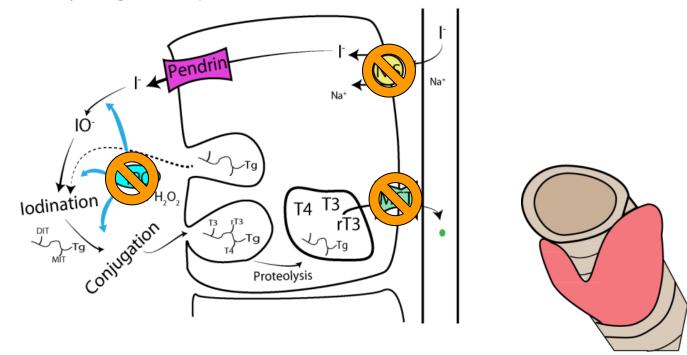

The aim of the project

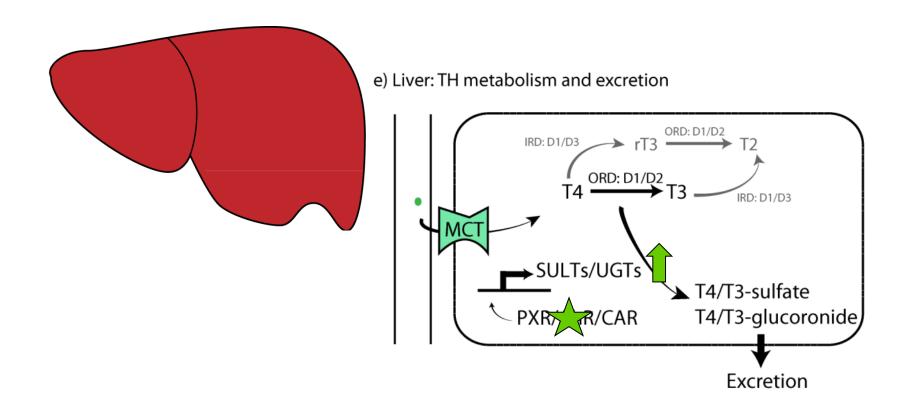
- The aim of the present project was to develop computer models for some of the most important mechanisms known to disturb the thyroid hormone balance.
- The models are so-called QSARs (quantitative structure-activity relationships), that can predict effects of chemicals based on their molecular structure.


Background


The hormone (or endocrine) system


Thyroid hormones

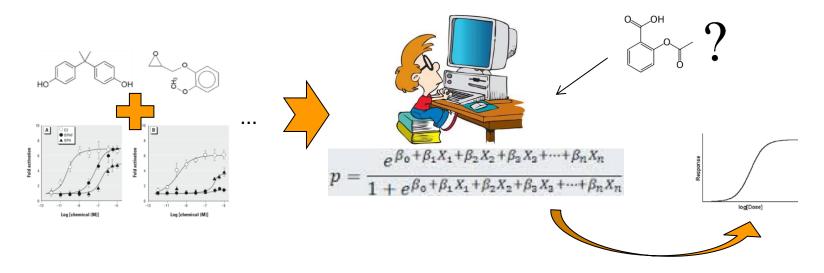

The thyroid hormone system



Thyroid disrupting chemicals

a) Thyroid gland: TH production

Thyroid disrupting chemicals



A role for computer models

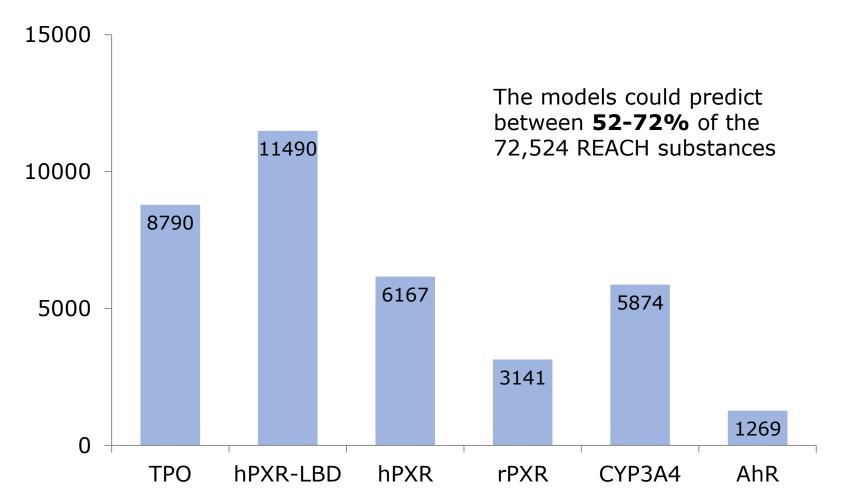
- Chemicals may interfere with the thyroid hormones in **many different ways** (hormone production, metabolism etc).
- A **battery** of test methods is therefore needed to cover all mechanisms, and this is a very resource-consuming task for the **many 1000s of untested chemicals**.
- To facilitate this task, computer models have become an important tool to screen and prioritize chemicals for further experimental testing, thereby reducing costs and number of test animals.

QSAR: Quantitative Structure-Activity Relationship

Assumption: the **structural similarity principle**, i.e. structurally similar chemicals exert similar properties

A **mathematical model** based on existing experimental data (training set), which relates **chemical structures** and a property \rightarrow

It can **predict** the property of an **untested chemical** based on its structure information


This project

Experimental data used to make the models (training sets)

Model	Total	Active	Inactive	Source
TPO inhibition	1519	230	1289	US-EPA
hPXR binding	1537	143	1394	NIH
hPXR activation	1644	207	1437	NIH
rPXR activation	1671	97	1574	NIH
CYP3A4 induction	1676	179	1497	NIH
AhR activation	4160	832	3328	PubChem

The accuracy of the QSAR models were between 75-93%, which means that the models are highly predictive

Number of REACH compounds predicted active

Ministry of Environment and Food The Danish Environmental Protection Agency

Danish (Q)SAR Database

The Danish (Q) SAR Database includes estimates from more than 200 (Q) SARs from free and commercial platforms and related to physicochemical properties, ecotoxicity, environmental fate, ADME and toxicity. (Q) SAR predictions for more than 600,000 chemical substances can be searched, sorting can be made on chemical similarity, and profiles for individual substances can be downloaded.

The database is developed by the National Food Institute, Technical University of Denmark, with support from the Danish Environmental Protection Agency, the Nordic Council of Ministers and the European Chemicals Agency.

http://qsar.food.dtu.dk

Free online database

Predictions for > 600,000 compounds

>200 QSAR predictions (e.g. phys.-chem. properties, health effects)

Danish (Q)SAR Models – coming soon

 On-the-fly predictions for user-defined chemical substances in >20 models from the Danish (Q)SAR database

Select models

Environment ADME Endocrine endpoints

Bacterial reverse mutation test (Ames test in S. typhimurium (in v

Chronosene Aberston in Chrise Hamtle Luig Céfi
Mattelon in Hydfarl Louz in Chrise Hamtle Chrise Cost Moves (problem Céfi
Mattelon in Hydfarl Louz in Chrise Hamtler Chry Cefi
Uscheduld Oth Synthesis in R4 Handsropkes
Synthe Hamtler Chris Chrosephan
Hamtler Enhyp Cefi Tandermation
Synthese Hamtler Chris Dosophila m
Sonomkom Hamtler Hamtler Chris Chrosephan
Description in Monos (Phyropes)
Description of Homes Hamtler Chris

Ames test

Other in vitro endpoints

Comet Assay in Mouse

Input structure

Predict and download report

Model	B	Prediction	
Model	Probability	Prediction	Report
ER alpha binding (human in vitro), all	0.155	NEG_IN	
ER alpha activation (human in vitro)	0.0186	NEG_IN	
Androgen receptor antagonism (human in vitro)	0.138	NEG_IN	
Unscheduled DNA Synthesis in Rat Hepatocytes	0.308	NEG_OUT	
Micronucleus Test in Mouse Erythrocytes	0.96	POS_IN	
Dominant Lethal Mutations in Rodents	0.979	POS_IN	
Maximum recommended daily dose (MRDD) in Humans	0.51	POS OUT	

Publication will be announced

on the Danish (Q)SAR Database homepage: http://qsar.food.dtu.dk

Computational Toxicology 1 (2017) 39-48

Contents lists available at ScienceDirect

Computational Toxicology

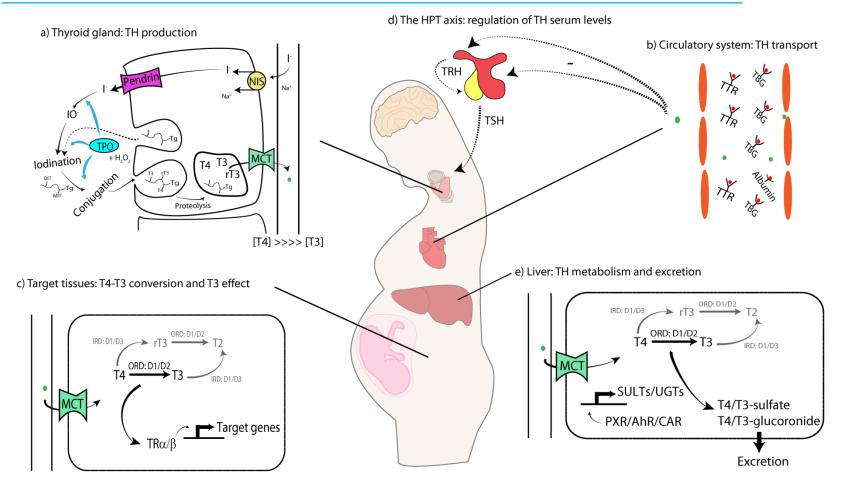
journal homepage: www.elsevier.com/locate/comtox

QSAR development and profiling of 72,524 REACH substances for PXR activation and CYP3A4 induction

S.A. Rosenberg^a, M. Xia^b, R. Huang^b, N.G. Nikolov^{a,1}, E.B. Wedebye^{a,1}, M. Dybdahl^{a,*,1}

^a Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, 2860 Søborg, Denmark ^b National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA

Computational Toxicology 4 (2017) 11-21


QSAR models for thyroperoxidase inhibition and screening of U.S. and EU chemical inventories \ddagger

S.A. Rosenberg^a, E.D. Watt^{b,2}, R.S. Judson^b, S.O. Simmons^b, K. Paul Friedman^b, M. Dybdahl^{a,1}, N.G. Nikolov^{a,1}, E.B. Wedebye^{a,*,1}

^a Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs. Lyngby, Denmark ^b National Center for Computational Toxicology, U.S. Environmental Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711, USA

Future research

In summary

- A number of **QSAR models** covering different mechanisms have been developed and validated. The models can predict if chemicals can interfere with the production and metabolism of thyroid hormones.
- The developed models have been used to screen around 70,000 REACH chemicals, i.e. chemicals potentially available at the European market.
- In this way, knowledge from experimental data on a limited number of chemicals was used to generate information for 10,000s of untested chemicals.

Conclusion

- The models can in a fast and cost-efficient way identify potential hormone disrupting chemicals in our food, environment and consumer products. The new models can also contribute to future design of safer chemicals and drugs.
- Results from the project was published recently in *Computational Toxicology* 2017; 1:39-48 and *Computational Toxicology* 2017; 4:11-21. The results are also included in a PhD report by Sine Rosenberg.

Thank you for listening

