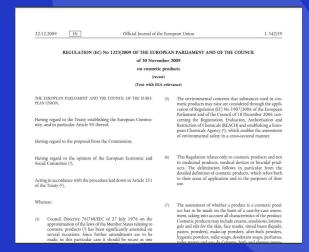
Using next generation risk assessment to make safety decisions for consumer products

Matt Dent Safety & Environmental Assurance Centre, Unilever

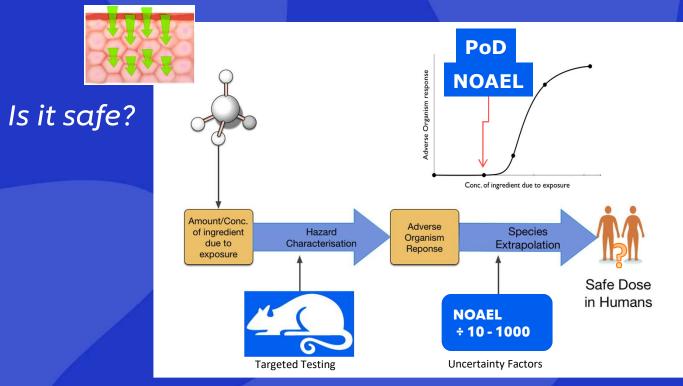
26/11/2021

Outline

- Why is NGRA important?
- What is it?
- How is it being applied today?
- Where next?


The need for non-animal approaches

Societal Attitudes/Consumer Preference



Human Relevance

Regulatory Change

The Systemic Challenge

Existing approaches

Threshold of Toxicological Concern

(Yang et al 2017) https://doi.org/10.1016/j.fct.2017.08.043

Read across

History of Safe Use (Neely et al 2011) https://doi.org/10.4103/0971-6580.85882

e.g. 90 Day Repeat Dose Study

A new non-animal paradigm is needed...
...but replacement of animal test data is not the answer

What is NGRA?

The National Academies of SCIENCES - ENGINEERING - MEDICINE REPORT

A Strategic Roadmap for Establishing
New Approaches to Evaluate the Safety
New Approaches and Medical Products

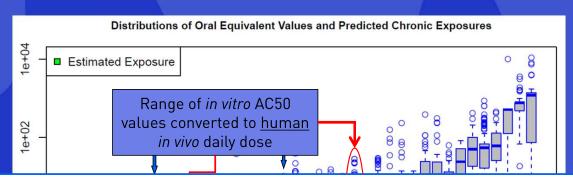
An exposure-led, hypothesis driven risk assessment approach that incorporates one or more NAMs to ensure that chemical exposures do not cause harm to consumers

Dent et al ., (2018) Comp Tox 7:20-26

Principles of NGRA from ICCR

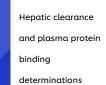
Main overriding principles:

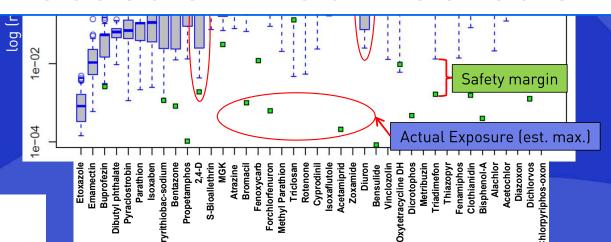
- » The overall goal is a human safety risk assessment
- » The assessment is exposure led
- » The assessment is hypothesis driven
- » The assessment is designed to prevent harm


Principles describe how a NGRA should be conducted:

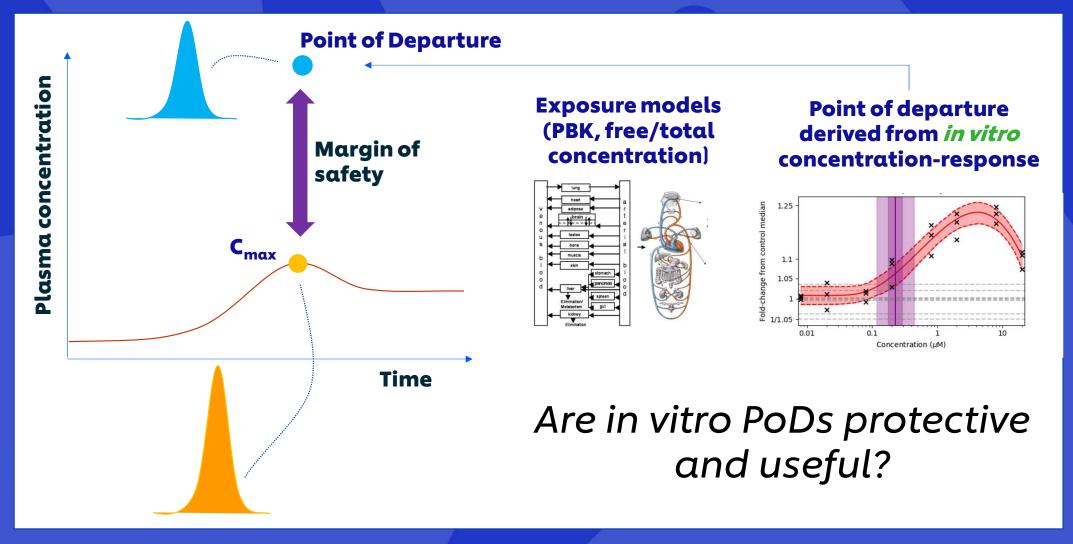
- Following an appropriate appraisal of existing information
- » Using a tiered and iterative approach
- » Using robust and relevant methods and strategies

Principles for documenting NGRA:


- » Sources of uncertainty should be characterized and documented
- » The logic of the approach should be transparent and documented

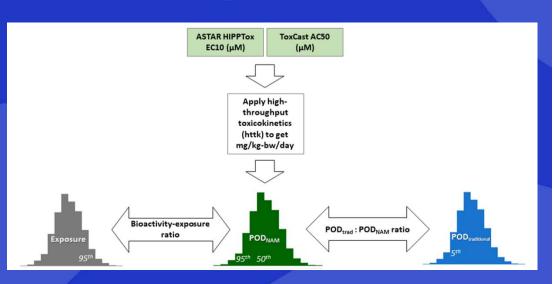

In Vitro Bioactivity vs Bioavailability

"Protection not Prediction"

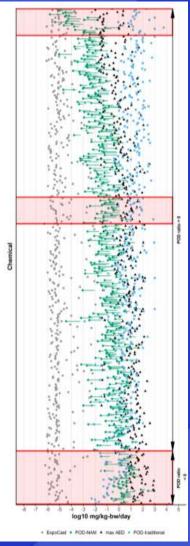


Slide from Dr Rusty Thomas, EPA, with thanks

Rotroff, et al. Tox.Sci 2010 Vol 117/2 348-358


https://doi.org/10.1093/toxsci/kfq220

The Margin of Safety Approach

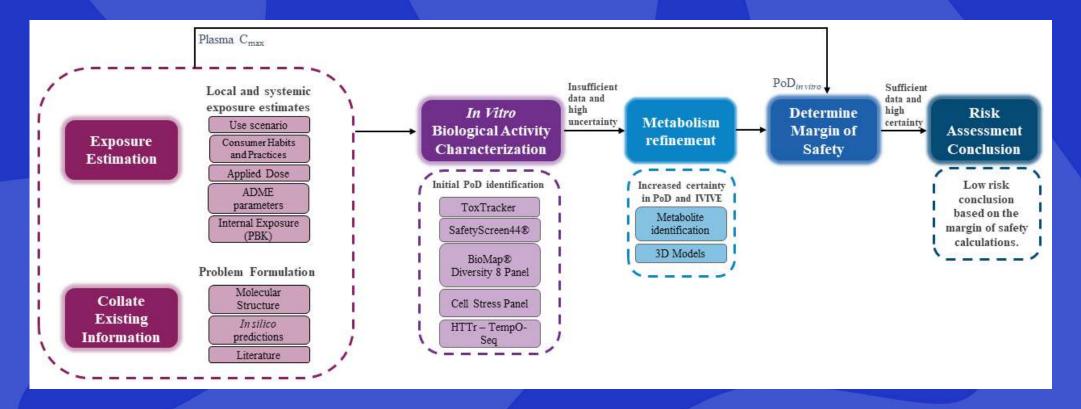


EPA, NTP, HC, A*STAR, ECHA, EFSA, JRC, RIVM...

Katie Paul-Friedman et al. 2019 Tox Sci 173(1): 202-225

414/448 chemicals = 92% of the time this naïve approach appears conservative

Case Study Approaches... Imagine we have no data for: Coumarin


Safety assessment required for 0.1% coumarin in Body Lotion

Safety assessment required for 0.1% coumarin in Face Cream

Baltazar et al., (2020) Tox Sci https://doi.org/10.1093/toxsci/kfaa048

Case Study Framework

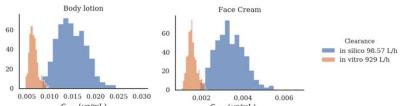
Baltazar et al., (2020) Toxicological Sciences 176(1): 236-252 https://doi.org/10.1093/toxsci/kfaa048

Collection of Existing Data and ADME Parameters

Name	Coumarin
CAS	91-64-5
MW	146.14 g/mol
Log P	1.39
Solubilit y	0.96 mg/mL in phosphate buffer
ECCS Class	Class 2 (Metabolism)
R _{b2p}	0.7
F _{ub}	0.31
Cl _{int}	929 L/h

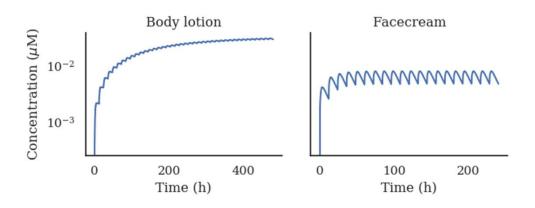
Chemistry determinations:

- Partition coefficient logP
- Peptide binding potential

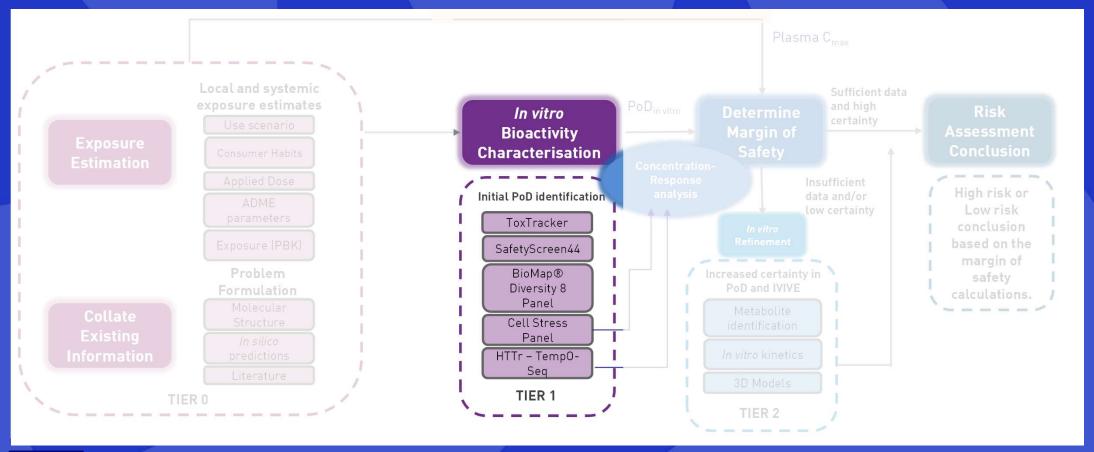

In vitro determined:

- Kinetic solubility
- Thermodynamic solubility
- Metabolic & chemical stability
- Stability in human plasma
- Plasma protein binding
- Partitioning in blood
- Skin penetration parameters

Systemic Bioavailability using PBK Modelling


Key output parameters from uncertainty analysis:

Parameter	Face cream (applied	Body lotion (applied
	2x/day)	2x/day)
Plasma Cmax total (µM)	0.023	0.10
95th percentile Cmax (µM)	0.032	0.14
Rody lotion	F C	


Uncertainty & Population Variability

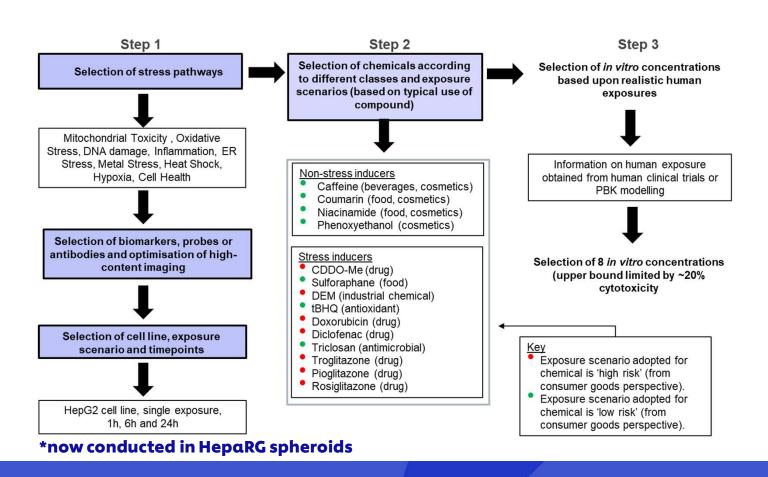
0.1% Face cream & body lotion in Europe

Physiologically-based kinetic modelling using GastroPlus® v9.5. Estimations based on experimental data (Clint, fup, bpr, solubility, LogP). Skin penetration parameters were fitted against skin penetration data.

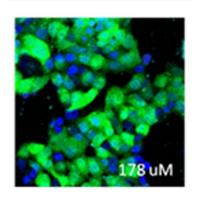
Ab Initio NGRA Framework

In Vitro Bioactivity: Safety Screen

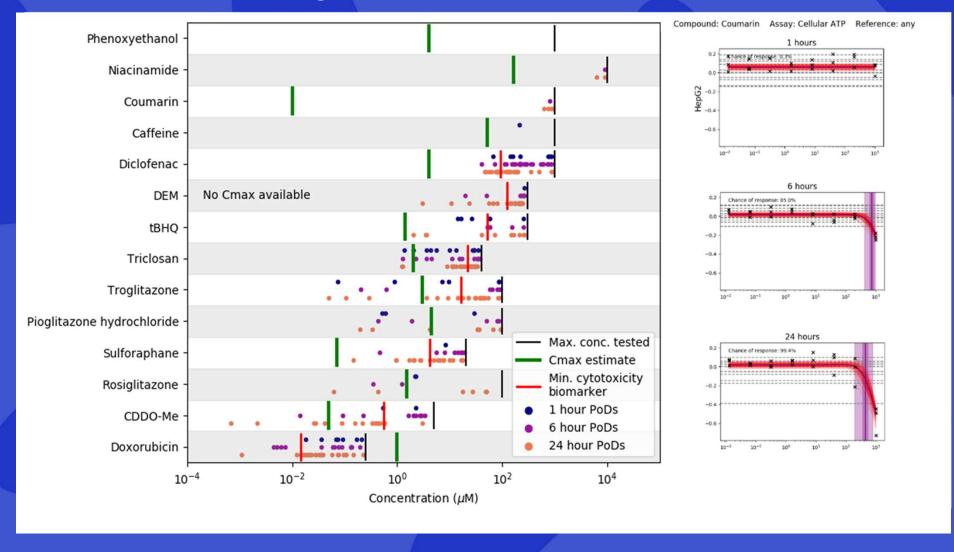
% Inhibition of Control Specific Binding -30 -20 -10 0 10 20 30 40 All binding and enzymatic assay results A2A(h) (agonist radioligand) Bowes et al 2012. Nature Reviews: Drug Discovery 11 909-922 α1A(h) (antagonist radioligand) were negative at 10 µM α2A(h) (antagonist radioligand) B1(h) (agonist radioligand) NOREPINEPHRINE norepinephrine 0355 No receptor/target-led pharmacological 0004 transporter ADRENERGIO alpha_{1A} 2338 SEROTONIN 5-HT transporter 0439 effect 0013 alpha, ION CHANNELS beta, 0018 GABA CHANNELS 0028 CCK1 (CCKA) (h) (agonist radioligand) 0020 CANNARINOID CB. GLUTAMATE CHANNELS NMDA 0036 0066 0037 NICOTINIC CHANNELS N neuronal α4β2 3029 D2S(h) (agonist radioligand) CHOLECYSTOKININ CCK, (CCK,) SEROTONIN CHANNELS 0039 5-HT. 0411 Nuclear Ca3+ channe 0161 (L, dihydropyridine site) 1322 NMDA (antagonist radioligand) **GPCR** panel receptor 0054 K+ CHANNELS hERG (membrane 1868 0870 panel K, channel 0166 MUSCARINIC Na+ CHANNELS 0091 Na+ channel (site 2) 0169 0093 M1(h) (antagonist radioligand) NUCLEAR RECEPTORS 0095 OPIOID & OPIOID-LIKE delta, (DOP) STEROID NUCLEAR 0114 0933 RECEPTORS GR M3(h) (antagonist radioligand) kappa (KOP) 1971 0469 **Transporter** Ion Channel mu (MOP) 0118 SEROTONIN 0131 panel panel ō (DOP) (h) (agonist radioligand) 2906 5-HT, 0132 CTK Lck kinase 5-HT, 0471 1333 OTHER NON-KINASE ENZYMES 5-HT, VASOPRESSIN 0159 AA METABOUSM 0726 COX 0727 MONOAMINE & 0363 NEUROTRANSMITTER 5-HT2A(h) (agonist radioligand) MAO-A 0443 Enzyme panel DOPAMINE dopamine 0052 PHOSPHODIESTERASES PDF3A 2432 PDE4D2 5-HT3/h) (antagonist radioligand) ■ HuCaT ■ HEK 293 ® Hela ■ HEL ■ Hep G2 ■ MCF7 Gene Expression Level across 5 cell lines SafetyScreen44[™] Panel AR (h) (agonist radioligand) Ca2+ channel (L. dihydropyridine site) (antagonist radioligand) KV channel (antagonist radioligand) Ion channels dopamine transporter(h) (antagonist radioligand) 5-HT transporter (h) (antagonist radioligand)


■ Test Concentration:1.0E-05 M

In Vitro Bioactivity: Cell Stress Panel



Hatherell et al., 2020 Tox Sci 176(1): 11-33 https://doi.org/10.1093/toxsci/kfaa054


~40 Biomarkers; 3 Timepoints; 8 Concentrations; ~10 Stress Pathways

Mitochondrial Toxicity
Oxidative Stress
DNA damage
Inflammation
ER Stress
Metal Stress
Osmotic Stress
Heat Shock
Hypoxia
Cell Health

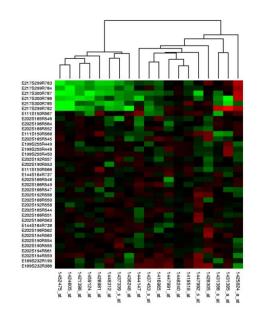
In Vitro Bioactivity: Cell Stress Panel

In Vitro Bioactivity: Tempo-Seq Technology Bio Spyder

High-Throughput Transcriptomics Gene Expression Profiling (HTTr)

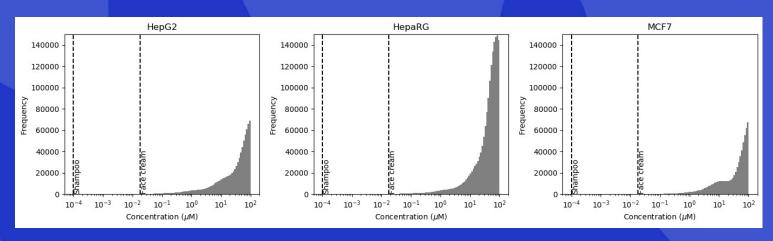
- Defining a safe operating exposure for systemic toxicity using a NOTEL (No Transcriptional Effect Level)
- Defining compound similarity grouping (Read Across)

NOTEL is the derived concentration of a compound that does not elicit a meaningful change in gene expression (i.e. the threshold of the concentration that elicits minimal mechanistic activity)


Cell lines (chosen to express a range of relevant receptors)

MCF-7 - human breast adenocarcinoma cell line

HepG2 - human liver carcinoma


HepaRG – terminally differentiated hepatic cells that retain many characteristics of primary human hepatocytes + as spheroids

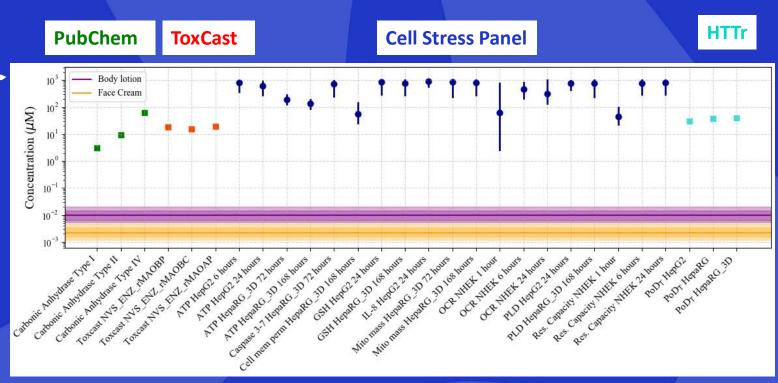
N-HEK – primary normal human epidermal keratinocytes

In Vitro Bioactivity: Tempo-Seq Technology

- Coumarin dose range 0.001uM to 100uM
- 24 hour time point
- QC and normalisation in DESeq2
- BMDExpress2 applied to determine NOTEL (3 pathway approaches)

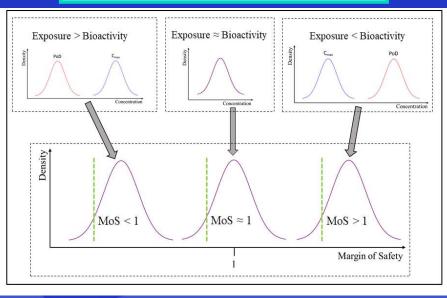
. <u> </u>			
Cell Model	HepG2	MCF7	HepaRG 2D
Pathway Level Tests	(308 pathways)	(0 pathways)	(17 pathways)
20 pathways with the lowest pvalue Reactome	70	NA	58*
20 pathways with the lowest BMD Reactome	44	NA	58*
BMD of Reactome pathway with lowest BMD that meets significance threshold criteria	31	NA	38
Gene Level Tests	(1570 genes)	(47 genes)	(87 genes)
Mean BMD of 20 genes with largest fold change	6	3	54
Mean BMD of Genes between 25th and 75th percentile	17	1	59

Margin of Safety considering PODs and Exposure


PoDs and plasma C_{max} (µM) are expressed as total concentration

C_{max} expressed as a distribution:

- Line = median (50th percentile)
- Inner band = 25th-75th percentile
- Outer band = 2.5th-97.5th percentile (95th credible interval)



Application of *Ab Initio A*pproach: Risk Assessment (NGRA)

Margin of safety or bioactivity:exposure ratio is the fold difference between the Cmax and the *in vitro*POD

Technology	Cell line/ Enzyme/Biomarker	Face cream Min. 5th percentile MoS	Body Lotion Min. 5th percentile MoS
Cell stress panel	HepG2 (ATP, 24h)	96738	22048
Cell stress panel	NHEK (OCR 1h)	1330	295
HTTr	HepG2 (24h)	7223	1618
HTTr	HepaRG (24h)	8864	1986
Toxcast	MAO B (rat bain)	3711	831
PubChem	Carbonic Anhydrase Type I	706	158
PubChem	Carbonic Anhydrase Type II	2140	479
PubChem	Carbonic Anhydrase Type VI	14652	3282
Cell stress panel	HepaRG_3D (cell mem perm 168h)	9601	2197
HTTr	HepaRG_3D_24h	9538	2137

Broader application and acceptance

ENV/CBC/MONO(2021)35

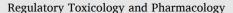
Unclassified

English - Or. English

27 October 2021

ENVIRONMENT DIRECTORATE
CHEMICALS AND BIOTECHNOLOGY COMMITTEE

Case Study on use of an Integrated Approach for Testing and Assessment (IATA) for Systemic Toxicity of Phenoxyethanol when included at 1% in a body lotion


Series on Testing and Assessment, No. 349

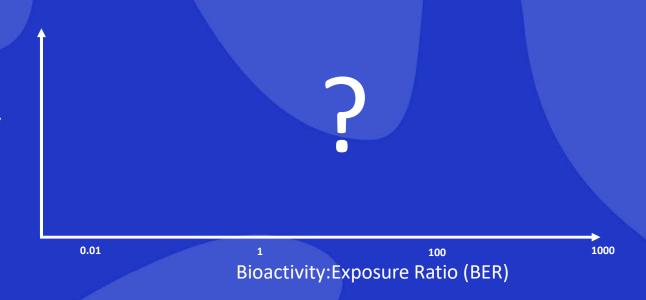
Regulatory Toxicology and Pharmacology 125 (2021) 105026

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/yrtph

Paving the way for application of next generation risk assessment to safety decision-making for cosmetic ingredients

M.P. Dent ^{a,*}, E. Vaillancourt ^b, R.S. Thomas ^c, P.L. Carmichael ^a, G. Ouedraogo ^d, H. Kojima ^c, J. Barroso ^f, J. Ansell ^g, T.S. Barton-Maclaren ^b, S.H. Bennekou ^h, K. Boekelheide ^l, J. Ezendam ^j, J. Field ^b, S. Fitzpatrick ^k, M. Hatao ^l, R. Kreiling ^m, M. Lorencini ^{a,1}, C. Mahony ^o, B. Montemayor ^p, R. Mazaro-Costa ^q, J. Oliveira ^r, V. Rogiers ^s, D. Smegal ^k, R. Taalman ^t, Y. Tokura ^u, R. Verma ^k, C. Willett ^v, C. Yang ^w


Highlights

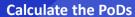
- Next generation risk assessment (NGRA) is exposure-led and hypothesis-driven.
- NGRA has the potential to support safety decision making without animals.
- Some examples of NGRA are available, but more are needed.
- Effort is needed to develop and test NGRA for different decision contexts.
- Seven areas are identified to help develop NGRA as a robust and protective approach.

Evaluating the level of protection

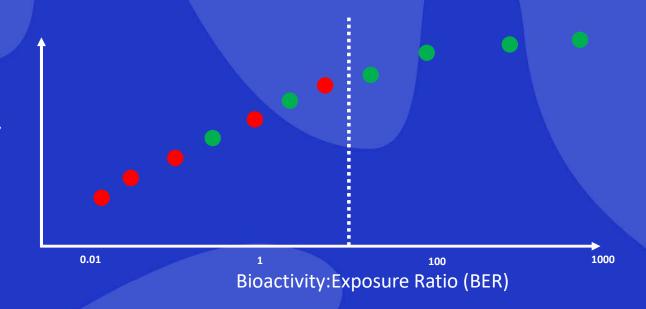

Chemical exposures scenarios

- 'Low' risk (from consumer goods perspective) – e.g. foods, cosmetics
- 'High' risk (from consumer goods perspective) e.g. drugs

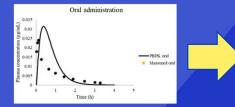
Define typical use-case scenarios benchmark chemical-exposures

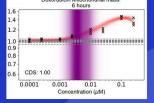


PBK models of systemic exposure



Evaluating the level of protection


Chemical exposures scenarios


- 'Low' risk (from consumer goods perspective) e.g. foods, cosmetics
- 'High' risk (from consumer goods perspective) e.g. drugs

Define typical use-case scenarios benchmark chemical-exposures

PBK models of systemic exposure

Where next?

- Clarity on the level of protection offered by this approach
 - Bioactivity vs. Adversity
- Adequacy of cell lines, timepoints, study designs what to do when the 'protective not predictive' NGRA fails
- Role of metabolism
- Translating principles to other sectors/chemistries
 - Regulation keeping pace with science

Conclusions

- We are seeing increased pace of development and application of next generation risk assessments in the consumer products industry
- NGRA is exposure-led, hypothesis driven, and requires clear articulation of the risk assessment question
- Progress has been possible with a change in mindset (protection not prediction)
- Once we understand the strengths and limitations why shouldn't the same approach be useful in different contexts?

Acknowledgements

Maria Baltazar
Sophie Cable
Paul Carmichael
Richard Cubberley
Tom Cull
Julia Fentem
Sarah Hatherell
Jade Houghton
Predrag Kukic
Juliette Pickles
Hequn Li
Sophie Malcomber
Alistair Middleton

Tom Moxon
Alexis Nathanail
Beate Nicol
Ruth Pendlington
Sam Piechota
Georgia Reynolds
Joe Reynolds
Paul Russell
Nikol Simecek
Andy Scott
Carl Westmoreland
Andy White

